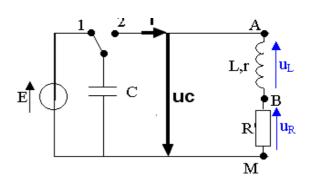
Le circuit R,L,C série

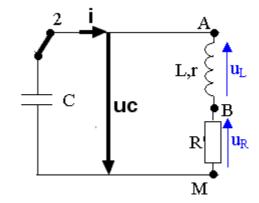
I) DEFINITION

II) ETUDE DU CIRCUIT R,L,C SERIE

1) Montage

- a) Interrupteur en position 1
- b) Interrupteur en position 2


En exercice établir l'équation différentielle donnant l'évolution de u_c (t)


2) Tension aux bornes du condensateur :

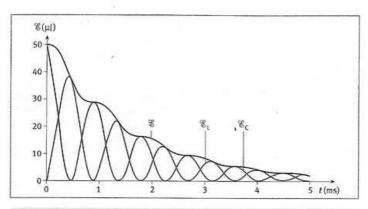
a) Résistance critique R_c

Voir synthèse ci-dessous Compléter le tableau.

- b) $R_t < R_c$
- c) $R_t = R_c$
- d) $R_t > R_c$

✓ Oscillations libres d'un circuit RLC série

Le condensateur d'un circuit RLC série est initialement chargé sous une tension E.


Régime	périodique	pseudo-périodique		apériodique	
Graphe $u_{\rm c}(t)$	0 (fal	t oc OV	E (x)	E LL IVI	
Valeur de R (Ω)	nulle	très faible	faible	grande	
Amortissement	aucun amortissement	très faible	faible	très important	
Période (s)	période propre T_0 $T_0 = 2\pi \sqrt{LC}$	pseudo-période T T = T ₀	pseudo-période T T ≠ T ₀	pas de période	
Oscillations	libres non amorties	libres amorties		pas d'oscillations	

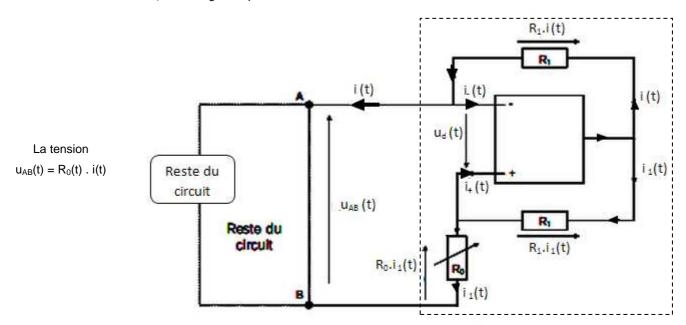
III) ETUDE ENERGETIQUE

1) Energie totale du circuit.

Donner l'expression de l'énergie totale du circuit à un instant t

2) Représentation graphique des énergies.

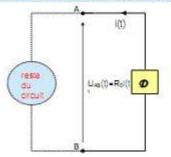
L'énergie du circuit est, au cours de son évolution, dissipée par **effet Joule** dans les conducteurs résistifs du circuit.


Évolution au cours du temps de l'énergie totale $\mathscr E$ du circuit RLC, de l'énergie $\mathscr E_{\mathsf L}$ dans le cas d'oscillations amorties (régime pseudo-périodique).

- a) Commentaires
- b) Interprétation
- 1) Donner l'expression de l'énergie reçue par la résistance R_t pendant une durée Δt.
- 2) Calculer la variation de l'énergie du circuit.

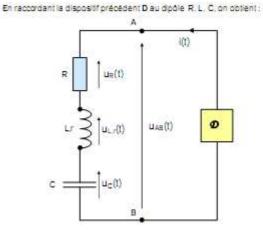
IV) ENTRETIEN DES OSCILLATIONS

1) Le montage : dispositif électronique (amplificateur opérationnel à résistance négative)


a) Montage complet

Encadré en pointillés le dispositif électronique permettant l'entretien des oscillations.

b) Montage simplifié


Le montage ci-dessus peut – être remplacé par le montage équivalent suivant : Quelle convention a-t-on adopté ici ? Le dispositif d'entreten des oscillations est danc équivalent à une source de tension délivrant une tension proporténnelle à l'intensité du courant qu'elle débite.

c) Montage final: on inclut le circuit R,L,C

2) Equation différentielle

- 1) Etablir l'équation différentielle en fonction de $u_C(t)$ et de $u_L(t)$ Sachant que $u_{AB}(t)=R_0(t).$ i(t)
 - 2) A quelle condition aura -t-on un oscillateur harmonique.
 - 3) Point de vue énergétique.
 - 4) Période des oscillations entretenues

Table des matières

I)	D	éfinition1
II)		Etude du circuit R,L,C série1
1)		Montage1
	a)	Interrupteur en position 11
	b)	Interrupteur en position 21
2)		Tension aux bornes du condensateur :1
	a)	Résistance critique R _c 1
	b)	$R_t < R_c$ 1
	c)	$R_t = R_c$
	d)	$R_t > R_c$
III)		Etude énergétique
1)		Energie totale du circuit1
2)		Représentation graphique des énergies2
	a)	Commentaires2
	b)	Interprétation
IV)		Entretien des oscillations

L)	Le montage : dispositif électronique (amplificateur opérationnel à résistance négative)	2
a)	Montage complet	2
b)	Montage simplifié	
•	Montage final : on inclut le circuit R,L,C	
c)		
2)	Equation différentielle	
3)	Point de vue énergétique.	3
1)	Période des oscillations entretenues	3