
I) LE DIPOLE BOBINE

- 1) Description
- 2) Le symbole
 - a) Bobine réelle

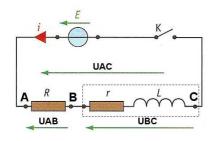
b) Bobine idéale

Ub

L di

- Quelques bobines utilisées au lycée.

 $u_r = r.i$


3) Modélisation d'une bobine

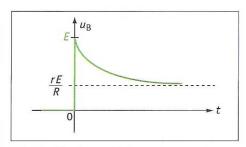
- a) Tension aux bornes d'une bobine réelle
- 1) Quelle est la convention d'orientation adoptée
- Donner la relation entre les trois tensions ci-contre. (exprimer les tensions avec deux lettres)
 Conclusion à retenir.
- 3) Analyse de la relation obtenue
 - b) Tension aux bornes d'une bobine idéale

Une bobine idéale est une bobine dont la résistance r est nulle. Donner la tension aux bornes d'une bobine idéale.

II) REPONSE D'UNE BOBINE SOUMISE A UN ECHELON DE TENSION MONTANT

1) Le montage




Le dipôle R-L est 'association en série d'une bobine (r,L) et d'une résistance de valeur R.

2) Description du montage

3) Résultats

L'intensité qui traverse la bobine et la tension aux bornes de la bobine sont représentées ci-dessous : commenter.

Évolution de la tension aux bornes d'une bobine lors de l'établissement du courant.

4) Réponse en courant d'une bobine soumise à un échelon de tension : étude analytique.

a) Conditions initiales

A l'instant t=0s on ferme le circuit : l'intensité du courant est i(o) = 0 A et la tension $u_{AC}(0) = E$

- b) Equation différentielle
- 1) Donner la relation entre les trois tensions en utilisant deux lettres (voir schéma ci-dessus)
- 2) Exprimer les tensions en fonction de l'intensité i(t) = i_{AC} (t)

On pose $R_t = R+r$: c'est la résistance totale du circuit.

- 3) Déterminer tau à partir de l'équation différentielle.
- 4) Donner l'équation différentielle traduisant la réponse en courant de la bobine en fonction de tau et de Rt
 - c) Résolution de l'équation
- 1) Solution de l'équation différentielle
 - a) De quel type est cette équation différentielle
 - b) En déduire la solution
- 2) Détermination des constantes

Conlusion

d) Analyse du graphique

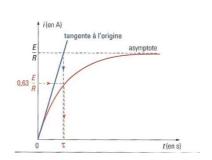
Quelle est la durée de l'établissement du courant permanent ? Quelle est la tension aux bornes de la bobine en courant permanent ?

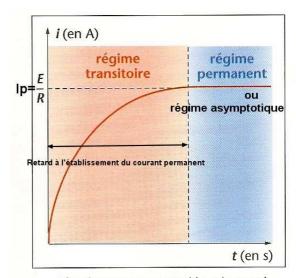
5) Réponse en tension d'une bobine soumise à un échelon de tension

- 1) r n'est pas négligeable devant R
- Déterminer la tension aux bornes de la bobine u_B (t)
- Déterminer la limite de la fonction u_B (t) lorsque t tend vers l'infini.
- Conclure
- 2) r est négligeable devant R
- Donner la nouvelle expression de u_B (t)
- Tracer les variations de u_B (t) en fonction de t.

III) ETUDE DE LA CONSTANTE DE TEMPS TAU DU DIPOLE R-L

1) Dimension de tau


a) Méthode 1 : à partir de l'équation différentielle


b) Méthode 2 : à partir de la solution de l'équation différentielle

c) Méthode 3 : équation aux dimensions

2) Détermination de la valeur de tau :

<u>Deux méthodes</u>: méthode des 63% et méthode de la tangente à l'origine.(voir ci-dessous)

On observe sur ce graphique le retard à l'établissement du courant (régime transitoire) dans un circuit comportant une bobine.

3) Durée du régime transitoire

4) Influence des paramètres du circuit sur la constante de temps tau

IV) **ENERGIE EMMAGASINEE PAR UNE BOBINE**

• L'énergie d'origine magnétique emmagasinée à l'instant de date t par une bobine d'inductance L quand elle est traversée par un courant d'intensité i(t)s'exprime par la relation :

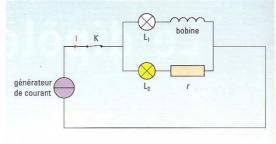
$$\mathscr{E}_{\text{mag}}(t) = \frac{1}{2} L i^{2}(t)$$

$$A \overset{(L, r)}{\longleftarrow} B$$

 $\mathscr{E}_{\text{mag}}(t) = \frac{1}{2} Li^2(t)$ $\mathscr{E}_{\text{mag}}(t)$: énergie emmagasinée en joule (J)

L: inductance de la bobine en henry (H)

i(t): intensité du courant traversant la bobine en ampère (A)


V) EXERCICES

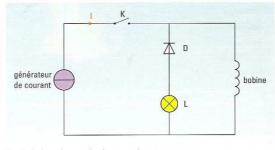
Influence d'une bobine dans un circuit (1)

Le circuit schématisé ci-contre est constitué d'un générateur idéal de courant, d'un interrupteur K, de deux lampes identiques L1 et L2, d'une bobine et d'un conducteur ohmique de résistance $r \rightarrow Doc. 2$). La valeur de la résistance r est égale à la valeur de la résistance de la bobine, mesurée à l'ohmmètre.

On ferme l'interrupteur K dans le circuit. La lampe L2 s'allume immédiatement, alors que la lampe L, s'allume avec un certain retard.

Doc. 2 - La lampe L, s'allume après la lampe L,

Questions

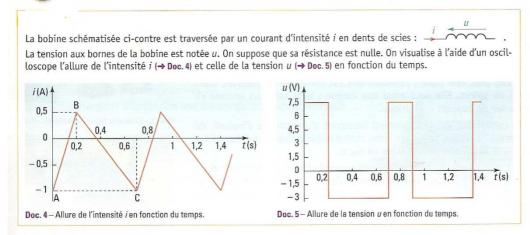

- 1. L'intensité du courant électrique délivrée par le générateur de courant varie brutalement d'une valeur nulle à une valeur I.
 - a) D'après les observations faites, comment varie l'intensité du courant électrique dans la lampe L₁?
 - b) Même question dans la lampe L2.
- 2. Quelle est l'influence de la bobine dans le circuit ?

Influence d'une bobine dans un circuit (2)

Le circuit schématisé ci-contre est constitué d'un générateur idéal de courant, d'un interrupteur K, d'une lampe L, d'une diode D et d'une bobine (→ Doc. 3). L'intensité du courant électrique délivré par le générateur de courant a une valeur I.

On ferme d'abord l'interrupteur K dans le circuit : la lampe reste éteinte.

On ouvre ensuite l'interrupteur K : la lampe L s'allume brièvement.



Doc. 3 - La lampe L reste allumée un court instant.

Ouestions

- 1. Rappeler quel est le principe de fonctionnement d'une diode. Lorsque l'interrupteur K est fermé, la diode D est-elle bloquée ou passante ?
- 2. Comment interpréter l'observation lorsqu'on ouvre l'interrupteur K?
- 3. Dans quel sens circule le courant électrique après l'ouverture de l'interrupteur ?
- 4. Comment se comporte alors la bobine dans le circuit ?

Relation tension-intensité pour une bobine

Questions

- 1. On se propose d'étudier les courbes obtenues entre les instants notés $t_{\rm A}=0$ s et $t_{\rm B}=0.2$ s.
- a) Donner l'expression de l'intensité i du courant en fonction du temps t.
- b) En déduire la valeur de la dérivée de l'intensité i du courant par rapport au temps t.
- c) Déterminer la valeur de la tension u.
- d) Calculer le rapport entre la valeur de la tension u et celle de la dérivée $\frac{di}{dt}$ de l'intensité.
- 2. Répondre aux mêmes questions entre les instants $t_{\rm B}=0.2$ s et $t_{\rm C}=0.7$ s. Conclure.

Sommaire

I) Le	dipôle bobine	1
1)	Description	1
2)	Le symbole	1
a)	Bobine réelle	1
b)	Bobine idéale	1
3)	Modélisation d'une bobine	1
a)	Tension aux bornes d'une bobine réelle	1
b)	Tension aux bornes d'une bobine idéale	1
II)	Réponse d'une bobine soumise à un échelon de tension montant	1
1)	Le montage	1
2)	Description du montage	1
3)	Résultats	1
4)	Réponse en courant d'une bobine soumise à un échelon de tension : étude analytique	2
a)	Conditions initiales	2
b)	Equation différentielle	2
c)	Résolution de l'équation	2
d)	Analyse du graphique	2
5)	Réponse en tension d'une bobine soumise à un échelon de tension	2
III)	Etude de la constante de temps tau du dipole R-L	2

1)	Dimension de tau	2
Ξ,		
a)	Méthode 1 : à partir de l'équation différentielle	2
b)	Méthode 2 : à partir de la solution de l'équation différentielle	2
c)	Méthode 3 : équation aux dimensions	2
2)	Détermination de la valeur de tau :	2
3)	Durée du régime transitoire	3
4)	Influence des paramètres du circuit sur la constante de temps tau	3
IV)	Energie emmagasinée par une bobine	3
V)	Exercices	3